A Division Algebra for Sequences Defined on all the Integers

By D. H. Moore

The convolution ring, \mathcal{S}, of sequences defined on the nonnegative integers, and the embedding of this ring in a field, have been discussed by Brand [1], Moore [2], [3], Traub [6], and others. Brand [1] specifically mentions that the field in which he embeds δ is a field of ordered pairs of members of \mathcal{S}. Traub does not identify his field and does not mention "ordered pairs", but he mentions an analogy to Mikusiński's work [7], and so he probably had in mind the same field of ordered pairs as did Brand. In [2] this writer showed that it was not necessary to create such a field of ordered pairs since there already existed a more natural, less abstract field in which to embed \mathcal{S}. It is the purpose of this article to introduce this already existing and more natural field, \mathcal{F}, in which \mathcal{S} may be embedded.

It will be assumed that the reader is familiar with the convolution algebra ofsequences as given in [1], [3], and [6] to the point of recognizing S as an integral domain in which convolution products defined by

$$
\begin{equation*}
\left\{a_{\nu}\right\}\left\{b_{\nu}\right\}=\left\{\sum_{\mu=0}^{\nu} a_{\mu} b_{\nu-\mu}\right\} \tag{1}
\end{equation*}
$$

contain no divisors of zero, in which the multiplicative unity is the sequence

$$
\{1,0,0,0, \cdots, 0, \cdots\}
$$

in which sequences of the form

$$
\{c, 0,0,0, \cdots, 0, \cdots\}
$$

behave like numbers and are identified with numbers:

$$
c=\{c, 0,0,0, \cdots, 0, \cdots\}
$$

in which the sequence

$$
\{0,1,0,0,0, \cdots, 0, \cdots\}
$$

is a shift operator denoted by " τ ", in which the sequence

$$
\{1,1,1, \cdots, 1, \cdots\}
$$

is a summing operator denoted by " σ ", and in which members of \mathcal{S} have operational forms in terms of τ and/or σ.

The sequences σ and τ are related by the equation

$$
\sigma(1-\tau)=1
$$

and since S has no divisors of zero we introduce fractions and write (for example)

$$
\begin{aligned}
& \sigma=\frac{1}{1-\tau} \\
& \frac{1}{\sigma}=1-\tau=\{1,-1,0,0,0, \cdots\}
\end{aligned}
$$

Received July 13, 1965. Revised August 19, 1965.

The fraction $1 / \tau$, for example, does not exist as a member of δ. But $1 / \tau$ will exist as a member of \mathfrak{F}.

Let \mathcal{F} be the class of number valued sequences defined over the integral domain, J, each of which assigns at most a finite number of nonzero values to negative integers. For each member of \mathcal{F} there is a least integer, m, to which the sequence assigns a nonzero value; the sequence will be said to enter at m, and the members of \mathfrak{F} will be called entering sequences. Equality, sums, and products with numbers, of members of \mathfrak{F} are defined in the usual termwise way. A suggested notation for such a sequence is

$$
\{1,2,3 \mid 4,5,6, \cdots\}
$$

where the vertical line-playing a role like a decimal point-separates values assigned to the negative integers from values assigned to the nonnegative integers, and the zeros assigned on the left are omitted for convenience.

Let ν be a variable on J. We define the unit step formula " $u(\nu)$ ":

$$
u(\nu)= \begin{cases}0, & \nu<0 \\ 1, & \nu \geqq 0\end{cases}
$$

Then $\{u(\nu)\}$ and $\{(\nu+1) u(\nu)\}$ (for example) are members of \mathcal{F}, whereas $\{\nu+1\}$ is not. The braces serve to bind out " ν " converting a formula into a notation for a sequence.

There is a natural one-to-one correspondence between \mathcal{S} (sequences defined on the nonnegative integers) and the subclass, \mathfrak{F}_{0}, of \mathfrak{F} consisting of sequences which enter at nonnegative points:

$$
\begin{equation*}
\left\{a_{0}, a_{1}, a_{2}, \cdots\right\} \leftrightarrow\left\{\cdots, 0,0 \mid a_{0}, a_{1}, a_{2}, \cdots\right\} \tag{2}
\end{equation*}
$$

The convolution, or convolution product, of two sequences a and b from \mathfrak{F} is defined by

$$
\begin{equation*}
a b=\left\{\sum_{\mu=-\infty}^{+\infty} a_{\mu} b_{\nu-\mu}\right\} . \tag{3}
\end{equation*}
$$

If c enters at α or to the right of α and b enters at β or to the right of β, then

$$
\begin{align*}
& (a b)_{\nu}= \begin{cases}\sum_{\mu=\alpha}^{\nu-\beta} a_{\mu} b_{\nu-\mu}, & \nu \geqq \alpha+\beta \\
0, & \nu<\alpha+\beta\end{cases} \tag{4}\\
& a b=\left\{u(\nu-\alpha-\beta) \sum_{\mu=\alpha}^{\nu-\beta} a_{\mu} b_{\nu-\mu}\right\} . \tag{5}
\end{align*}
$$

The summation limits are finite in (5) since the sequences are entering sequences. In particular, if a and b are members of the subclass \mathscr{F}_{0}, we may take $\alpha=\beta=0$ in (5) and (5) becomes

$$
\begin{equation*}
a b=\left\{u(\nu) \sum_{\mu=0}^{\nu} a_{\mu} b_{\nu-\mu}\right\} \tag{6}
\end{equation*}
$$

A comparison of (1) and (6) shows that the correspondence (2) is an isomorphism under convolution; we embed \mathcal{S} in \mathfrak{F}, identify \mathcal{S} with \mathfrak{F}_{0}, elevate (2) to an
equality, and permit any notation for a member of S to be used as a notation for the corresponding member of \mathfrak{F}_{0}. In particular

$$
\begin{align*}
1 & =\{\cdots, 0,0,0 \mid 1,0,0,0, \cdots, 0, \cdots\} \\
\sigma & =\{\cdots, 0,0,0 \mid 1,1,1, \cdots, 1, \cdots\} \\
\tau & =\{\cdots, 0,0,0 \mid 0,1,0,0,0, \cdots, 0, \cdots\} \tag{7}\\
\tau^{m} & =\{\cdots, 0,0,0 \mid \underbrace{0,0, \cdots, 0}_{m \text { zeros }}, 1,0,0,0, \cdots\}
\end{align*}
$$

Defining ζ by :

$$
\begin{equation*}
\zeta=\{1 \mid 0,0,0, \cdots, 0, \cdots\} \tag{8}
\end{equation*}
$$

we have

$$
\begin{equation*}
\zeta^{m}=\underbrace{\{1,0,0,0, \cdots, 0}_{m \text { digits }} \mid 0,0,0, \cdots, 0, \cdots\} \quad m=\text { positive integer. } \tag{9}
\end{equation*}
$$

Equations (7) and (9) may be verified by induction. Using (5) we may verify that

$$
\begin{aligned}
\tau \zeta & =1 \\
\tau^{m+n} & =\zeta^{m} \tau^{n} \\
\zeta^{m+n} & =\zeta^{m} \zeta^{n} \\
\tau^{m}\left\{a_{\nu}\right\} & =\left\{a_{\nu-m}\right\} \\
\zeta^{m}\left\{a_{\nu}\right\} & =\left\{a_{\nu+m}\right\}
\end{aligned}
$$

Under ordinary addition and convolution multiplication \mathfrak{F} is a field. We need only verify here that each nonzero member of \mathfrak{F} has a multiplicative inverse. To begin with, every sequence of the form

$$
\left\{a_{0}, a_{1}, a_{2}, \cdots\right\}
$$

in which $a_{0} \neq 0$ (the sequence enters at the origin) has an inverse:

$$
\left\{x_{0}, x_{1}, x_{2}, \cdots\right\}
$$

which may be evaluated as follows:

$$
\begin{aligned}
\left\{a_{0}, a_{1}, a_{2}, \cdots\right\}\left\{x_{0}, x_{1}, x_{2}, \cdots\right\} & =\{1,0,0,0, \cdots\} \\
a_{0} x_{0} & =1 \\
a_{0} x_{1}+a_{1} x_{0} & =0 \\
a_{0} x_{2}+a_{1} x_{1}+a_{2} x_{0} & =0
\end{aligned}
$$

Since the only division involved in solving for the x 's is division by a_{0}, and $a_{0} \neq 0$, the x 's exist and so the desired inverse exists.

Finally, let a be any nonzero member of \mathfrak{F} which does not enter at the origin.

Since \boldsymbol{a} is an entering sequence, there exists a sequence A and a positive integer m such that either

$$
\begin{equation*}
a=\tau^{m} A \quad \text { or } \quad a=\zeta^{m} A \tag{10}
\end{equation*}
$$

where A enters at the origin, and so has an inverse A^{-1} by the preceding paragraph. Then either

$$
\left(A^{-1} \zeta^{m}\right) a=1 \quad \text { or } \quad\left(A^{-1} \tau^{m}\right) a=1
$$

and so, in any case, a has a multiplicative inverse, and \mathfrak{F} is a field.
Since \mathfrak{F} contains no divisors of zero, products lead to the introduction of fractions:

$$
\left.\begin{array}{c}
a, b, c \in \mathcal{F} \\
\text { and } \\
a b=c \\
\text { and } \\
a \neq 0
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
\frac{c}{a} \text { exists as a member of } \mathfrak{F} \\
\text { and } \\
\frac{c}{a}=b \\
\text { and } \\
a\left(\frac{c}{a}\right)=c .
\end{array}\right.
$$

In particular

$$
\zeta=\{1 \mid 0,0,0, \cdots\}=\frac{1}{\tau}=\frac{\{1,0,0,0, \cdots\}}{\{0,1,0,0,0, \cdots\}}
$$

and $1 / \tau$ exists as a member of \mathfrak{F}.
Members of \mathfrak{F} may be put into operational form in terms of σ, τ, and/or ζ.
Example 1.

$$
\begin{aligned}
\left\{\frac{\nu(\nu-1)}{2} u(\nu+2)\right\} & =\{3,1 \mid 0,0,1,3,6,10,15, \cdots\} \\
& =\zeta^{2}\left\{\frac{(\nu-2)(\nu-3)}{2} u(\nu)\right\}=\frac{\zeta^{2}}{2}\left\{\left(\nu^{2}-5 \nu+6\right) u(\nu)\right\} \\
& =\frac{\zeta^{2}}{2}\left(\sigma^{2} \tau+2 \sigma^{3} \tau^{2}-5 \sigma^{2} \tau+6 \sigma\right)
\end{aligned}
$$

where $\{\nu u(\nu)\}=\sigma^{2} \tau$ and $\left\{\nu^{2} u(\nu)\right\}=\sigma^{2} \tau+2 \sigma^{3} \tau^{2}$ as shown in [2], and as may be checked straightforwardly. Then

$$
\left\{\frac{\nu(\nu-1)}{2} u(\nu+2)\right\}=\sigma^{3}-2 \sigma^{2} \zeta+3 \sigma \zeta^{2}
$$

In Traub [6, p. 196], every quotient of "generalized" sequences with a nonzero denominator equals a shift operator times an ordinary sequence. Thus, in Traub's notation,

$$
\frac{f}{g}=\frac{f}{\omega^{i} e}=\omega^{-i} \frac{f}{e}
$$

where f / e equals an ordinary sequence since e assigns a nonzero value to the origin; ω^{-i} is a shift operator, and is a "generalized" sequence-an ordered pair of ordinary sequences. In comparison, in the present paper, we are dealing with entering sequences (defined on J) instead of ordered pairs, and every quotient, b / a, of entering sequences (with nonzero denominator) equals an entering sequence. In evaluating b / a we may replace a, as in (10), by $\tau^{m} A$ or $\zeta^{m} A$, as appropriate, and obtain respectively

$$
\frac{b}{a}=\zeta^{m} \frac{b}{A} \quad \text { or } \quad \frac{b}{a}=\tau^{m} \frac{b}{A}
$$

where $b / A, \zeta^{m}$, and τ^{m} are all entering sequences.
Example 2.

$$
\begin{aligned}
\frac{\{1,-1,1,-1,1,-1, \cdots\}}{\{1,1,1 \mid 1,1, \cdots\}} & =\frac{1 /(1+\tau)}{\zeta^{3} \sigma}=\tau^{3} \frac{1-\tau}{1+\tau} \\
& =\tau^{3}\{1,-2,2,-2,2,-2, \cdots\} \\
& =\{0,0,0,1,-2,2,-2,2,-2, \cdots\}
\end{aligned}
$$

Example 3.

$$
\begin{aligned}
& \frac{\{3,1 \mid 0,0,1,3,6,10,15, \cdots\}}{\{0,0,0,1,3,3,1,0,0,0, \cdots\}} \\
&= \frac{\sigma^{3}-2 \sigma^{2} \zeta+3 \sigma \zeta^{2}}{\tau^{3}(\tau+1)^{3}} \\
&= \frac{\frac{1}{(1-\tau)^{3}}-2 \frac{1}{(1-\tau)^{2}} \frac{1}{\tau}+3 \frac{1}{1-\tau} \frac{1}{\tau^{2}}}{\tau^{3}(\tau+1)^{3}} \\
&=\left(\frac{6}{\tau^{3}}-\frac{8}{\tau^{4}}+\frac{3}{\tau^{5}}\right) \frac{1}{\left(1-\tau^{2}\right)^{3}} \quad \text { (see example 1) } \\
&=\left(6 \zeta^{3}-8 \zeta^{4}+3 \zeta^{5}\right)\{1,0,3,0,6,0,10,0,15,0, \cdots\} \\
&=\{6,0,18 \mid 0,36,0,60, \cdots\} \\
&+\{-8,0,-24,0 \mid-48,0,-80,0, \cdots\} \\
&+\{3,0,9,0,18 \mid 0,30,0,45, \cdots\} \\
&=\{3,-8,15,-24,36 \mid-48,66,-80,105, \cdots\}
\end{aligned}
$$

The last result may be checked by cross multiplication:

$$
\begin{aligned}
\{0,0,0,1,3,3,1,0,0,0, \cdots\}\{3,-8,15,-24,36 & \mid-48,66,-80,105, \cdots\} \\
& =\{3,1 \mid 0,0,1,3,6,10,15, \cdots\}
\end{aligned}
$$

A convenient way to multiply two entering sequences is to ignore the vertical lines at first, and then insert a vertical line in the final answer, following rules similar to those for the insertion of a decimal point in a product of decimals.

George Boole's operator, E, [4, p. 16] which shifts a sequence to the left and replaces by zero the terms which pass the origin, operates only on sequences which vanish to the left of the origin:

$$
E^{n}\{f(\nu) u(\nu)\}=\{f(\nu+n) u(\nu)\}, \quad n=\text { nonnegative integer. }
$$

Thus E cannot be identified with ζ; neither is E to be discarded, since there is no convolution product to do the job that E does, and that job is important. However, George Boole's symbolic method [4, p. 215] is salvaged if E is replaced by ζ as discussed in [2]. Thus, Boole's symbolic equation [4, pp. 217, 218]

$$
\frac{b^{x}}{E-a}=\frac{b^{x}}{b-a}+c a^{x}, \quad c=\text { arbitrary constant } a, b \text { numbers }
$$

becomes:

$$
\begin{equation*}
\frac{\left\{b^{\nu} u(\nu)\right\}}{\zeta-a}=\frac{\left\{b^{\nu} u(\nu)\right\}}{b-a}+\frac{\left\{a^{\nu} u(\nu)\right\}}{a-b} . \tag{11}
\end{equation*}
$$

This follows from the equation

$$
\left\{c^{\nu} u(\nu)\right\}=\frac{1}{1-c \tau}=\frac{\zeta}{\zeta-c}, \quad c=\text { number }
$$

which is easily checked by cross multiplication. To prove (11) we have

$$
\begin{aligned}
\frac{\left\{b^{\nu} u(\nu)\right\}}{\zeta-a} & =\frac{\zeta}{\zeta-b} \frac{1}{\zeta-a}=\frac{1}{b-a} \frac{\zeta}{\zeta-b}+\frac{1}{a-b} \frac{\zeta}{\zeta-a} \\
& =\frac{\left\{b^{\nu} u(\nu)\right\}}{b-a}+\frac{\left\{a^{\nu} u(\nu)\right\}}{a-b}
\end{aligned}
$$

When operational forms of sequences are expressed in terms of ζ they match the Z-transforms of sequences as used, for example, by Aseltine [5] (hence the use of " ζ " for the reciprocal of τ). For example [5, p. 259]

$$
\{u(\nu)\}=\sigma=\frac{1}{1-\tau}=\frac{\zeta}{\zeta-1} .
$$

But now ζ is a sequence and not a variable, a formula in ζ equals a sequence rather than being a "transform" of it, and the introduction of the ζ-forms requires no theory of convergence of power series. In [2, pp. 140-143] it is shown that results previously obtained using the theory of functions of a complex variable including branch cuts and the theory of residues, may be obtained by purely algebraic methods from the field properties of \mathfrak{F}.

California State Polytechnic College
Pomona, California

[^0]4. George Boole, Calculus of Finite Differences, 4th ed., Chelsea, New York, 1957. MR 20 * 1124.
5. John Aseltine, Transform Method in Linear System Analysis, McGraw-Hill Electrical and Electronics Engineering Series, McGraw-Hill, New York, 1958. MR 21 * 6201.
\rightarrow J. F. Traub, "Generalized sequences with applications to the discrete calculus," Math. of Comp., v. 19, 1965, pp. 177-200.
7. J. Mikusifski, Operational Calculus, International Series of Monographs on Pure and Applied Mathematics, Vol. 8, Pergamon Press, New York, and Państwowe Wydawnictwo Naukowe, Warsaw, 1959. MR 21 * 4333.

[^0]: \rightarrow Louis Brand, "A division algebra for sequences and its associated operational calculus," Amer. Math. Monthly, v. 71, 1964, pp. 719-728. MR 29 *5069.
 2. D. H. Moore, "Convolution products and quotients of sequences. An operational calculus for sequences and for pulsed-data and digital systems,' Dissertation, Univ. of Calif., Los Angeles, 1962.
 \rightarrow D.;H. Moore, "Convolution products and quotients and algebraic derivatives of sequences," Amer. Math. Monthly, v. 69, 1962, pp. 132-138. MR 25 * 402.

