
A Division Algebra for Sequences Defined 
on all the Integers 

By D. H. Moore 

The convolution ring, 8, of sequences defined on the nonnegative integers, and 
the embedding of this ring in a field, have been discussed by Brand [1], Moore 
[2], [3], Traub [6], and others. Brand [1] specifically mentions that the field in which 
he embeds 8 is a field of ordered pairs of members of S. Traub does not identify his 
field and does not mention "ordered pairs", but he mentions an analogy to Mikusifi- 
ski's work [7], and so he probably had in mind the same field of ordered pairs as 
did Brand. In [2] this writer showed that it was not necessary to create such a field 
of ordered pairs since there already existed a more natural, less abstract field in 
which to embed S. It is the purpose of this article to introduce this already existing 
and more natural field, iY, in which 8 may be embedded. 

It will be assumed that the reader is familiar with the convolution algebra of 
sequences as given in [1], [3], and [6] to the point of recognizing 8 as an integral 
domain in which convolution products defined by 

(1) {a,} {bI} ab,,, 
contain no divisors of zero, in which the multiplicative unity is the sequence 

{1, O.OO... * O.*-}, 

in which sequences of the form 

{c, 0, 0, 0, ... , 0, ... } 
behave like numbers and are identified with numbers: 

{c, 0, 0, 0,. 0 ,. . 0, }, 

in which the sequence 

{O, 1, 0,0,0, . 0 . , 0, * 

is a shift operator denoted by "r", in which the sequence 

{1, 1, 1,... , 1, ... I 

is a summing operator denoted by "a", and in which members of 8 have operational 
forms in terms of r and/or a. 

The sequences a- and r are related by the equation 

(1 -) = 1 

and since 8 has no divisors of zero we introduce fractions and write (for example) 

- 1 - . 

- = 1 - = {1, -1,0,0,0, *--}. 

Received July 13, 1965. Revised August 19, 1965. 

311 



312 D. H. MOORE 

The fraction 1/r, for example, does not exist as a member of S. But 1/r will exist 
as a member of iY. 

Let 5Y be the class of number valued sequences defined over the integral domain, 
J, each of which assigns at most a finite number of nonzero values to negative in- 
tegers. For each member of 5Y there is a least integer, m, to which the sequence 
assigns a nonzero value; the sequence will be said to enter at rn, and the members 
of 5F will be called entering sequences. Equality, sums, and products with numbers, 
of members of 5Y are defined in the usual termwise way. A suggested notation for such 
a sequence is 

{1,2,314,5,6, ...} 

where the vertical line-playing a role like a decimal point-separates values 
assigned to the negative integers from values assigned to the nonnegative integers, 
and the zeros assigned on the left are omitted for convenience. 

Let v be a variable on J. We define the unit step formula "u(v)": 

u(v) = 
t1, v > 0. 

Then {u(v)} and { (v + 1 )u(v)} (for example) are members of iY, whereas { v + 1} 
is not. The braces serve to bind out "v" converting a formula into a notation for a 
sequence. 

There is a natural one-to-one correspondence between 8 (sequences defined on 
the nonnegative integers) and the subclass, 5Yo, of 5Y consisting of sequences which 
enter at nonnegative points: 

(2) {ao,a1,a2, * } A{ 0,0,O aoai,a2, ** }. 

The convolution, or convolution product, of two sequences a and b from 5Y is 
defined by 

(3) ab = {E asb,,-,} 
,..=-00 

If a enters at a or to the right of a and b enters at j3 or to the right of j3, then 

a,, b,sb-, v > av + A 
(4) (ab), = Za 

t0X ~v<a+f,, 
0) v- <A 

(5) ab =fiU(v - amA a,,b_,-,A 
-a=a 

The summation limits are finite in (5) since the sequences are entering sequences. 
In particular, if a and b are members of the subclass 5Vo, we may take av = B 
in (5) and (5) becomes 

(6) ab = {u(v) E aZb,,A 

A comparison of (1) and (6) shows that the correspondence (2) is an iso- 
morphism under convolution; we embed 8 in iv, identify 8 with 5Y0, elevate (2) to an 
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equality, and permit any notation for a member of 8 to be used as a notation for 
the corresponding member of 3Yo. In particular 

1 = I Olf,0,0, I1,0,0,0, ... ,0,.. 

a- = I** O. O. O I 1, 1, 1, ... *, 1, ** 
(7) m = positive integer. 

= {.,0,o,0I0,0,1,0 ,1,0,0, ,0,...} 

Ir I O. O. O | l O . .O . * * ) *, O. 1, O. O .O . .** 

m zeros 

Defining ? by: 

(8) 1 I { l ... I ,? ... 

we have 

m= 11 ,0 ,0 ,0 , * * 0 ,0* * * * } m = positive integer. 
(9) '- m digits 

Equations (7) and (9) may be verified by induction. Using (5) we may verify that 

Tr = 1 

m+n =mn 

,m+n 
= men m, n positive integers. 

Tm{ a,} = { a,- m} 

Emj al = {'a,+m} 

Under ordinary addition and convolution multiplication ff is a field. We need 
only verify here that each nonzero member of 5 has a multiplicative inverse. To 
begin with, every sequence of the form 

{ao, al, a2, ... 

in which ao 7? 0 (the sequence enters at the origin) has an inverse: 

{oX 1, X2 *I } 

which may be evaluated as follows: 

{ao, a,, a2, }{o, X, X, * = {1, 0, 0, 0, 

aoxo = 1 

aox1 + alxo = 0 

aOx2 + aix, + a2xO = 0 

Since the only division involved in solving for the x's is division by ao, and ao 5 0, 
the x's exist and so the desired inverse exists. 

Finally, let a be any nonzero member of 5f which does not enter at the origin. 
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Since a is an entering sequence, there exists a sequence A and a positive integer m 
such that either 

(10) a= rtA or a = DmA 

where A enters at the origin, and so has an inverse A-' by the preceding paragraph. 
Then either 

(A-l'm)a = 1 or (A-irm)a 1 

and so, in any case, a has a multiplicative inverse, and ff is a field. 
Since 5Y contains no divisors of zero, products lead to the introduction of frac- 

tions: 

a ,cCE f? exists as a member of ff 3 ~~~a 

and and 

ab=c a= b 
a 

and and 

a j 0 a (-) = c. 

In particular 

v= 1 I 0, 0,0, =T ={, ,0,0,0* } 

and 1/r exists as a member of i. 
Members of ~F may be put into operational form in terms of a, r, and/or I. 
Example 1. 

{ 2 u (v + 2)} 1 3, 1 1 O. 0. 1) 3) 6 10) 15 } 

2 - 2) (v- 3) u(v)} = -{(P2 - 5v + 6)u(v)} 

(a2? + 2a3 2 5 2 + 6a) 
2 

where {vu(v)} = 
a and {I2U(V)} = a + 2 3r2 as shown in [2], and as may be 

checked straightforwardly. Then 

{ vt 2 = u-(2o2 + 3a2 . 

In Traub [6, p. 196], every quotient of "generalized" sequences with a nonzero 
denominator equals a shift operator times an ordinary sequence. Thus, in Traub's 
notation, 

f = f -if 
g Wee e 
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where f/e equals an ordinary sequence since e assigns a nonzero value to the origin; 
w is a shift operator, and is a "generalized" sequence-an ordered pair of ordinary 
sequences. In comparison, in the present paper, we are dealing with entering se- 
quences (defined on J) instead of ordered pairs, and every quotient, b/a, of entering 
sequences (with nonzero denominator) equals an entering sequence. In evaluating 
b/a we may replace a, as in (10), by rtmA or PmA, as appropriate, and obtain re- 
spectively 

b mb b mb 
-- or - =_ 

a A a A 

where b/A, tm, and rm are all entering sequences. 
Example 2. 

{ 1,-1, 1,-1, 1,1,..} * -' * 1/ - 2) 2- -2 
{1,11 11,l *-} 31 +r 

={0, 0, 0, 1,-2, 2, -2, 2- 22, **}. 

Example 3. 

{3 1 1 0, 0, 1,3, 6,10,15,--}. 
{0, 0,0, 1 3, 3, 12 0 0, 0, . . 

3-2 22 + 3oft2 

r3(r + 1)3 (see example 1) 

1_ 
1 1 1 1 

-2 -+3 - 

- (1-r)3 (1-)2r 1 -@rr2 
T3(r + 1)3 

(73 T4 + 1 ( 2)3 (omitting several algebraic steps) 

=(6P38? + 3r5) {1, 0, 3, 0, 6,0, 10, 0, 15, 0, * 

(which may be checked by cross multiplication) 

= {6,0, 18 1 0,36,0,60, ...} 

+ {- 8,0, -24,0 1-48,0, - 80,0, *--} 

+ {3,0,9,0, 18 1 0,30,0,45, ..I 

={3, - 8, 15, - 24, 36 1 - 48, 66, - 80,105, }. 

The last result may be checked by cross multiplication: 

0,O, 0,1, 3,3,1,0,0,0, ...}{3, -8,15, -24,36/ -48,66, -80, 105, ...} 

= {3, 1 1 0, 0, 1, 3, 6, 10, 15, *1. 

A convenient way to multiply two entering sequences is to ignore the vertical 
lines at first, and then insert a vertical line in the final answer, following rules similar 
to those for the insertion of a decimal point in a product of decimals. 
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George Boole's operator, E, [4, p. 16] which shifts a sequence to the left and 
replaces by zero the terms which pass the origin, operates only on sequences which 
vanish to the left of the origin: 

EI{f (u)u(v)} = {f (@ + n)u( ()}, n = nonnegative integer. 

Thus E cannot be identified with t; neither is E to be discarded, since there is no 
convolution product to do the job that E does, and that job is important. However, 
George Boole's symbolic method [4, p. 215] is salvaged if E is replaced by v as dis- 
cussed in [2]. Thus, Boole's symbolic equation [4, pp. 217, 218] 

E-a b-a + caX c = arbitrary constant a, b numbers 

becomes: 

(11) {bVu(v)} I {bvu(v)} + {avu(v)} 
r - a b-a a-b 

This follows from the equation 

{cvu(v)} I l _ c c = number 

which is easily checked by cross multiplication. To prove (11) we have 

{b Vu(v)} I 1: 1 + 1 v 
-a -b -a baD -b a - b a 

- {b~u(v)} + {avu(v)} 
b-a a-b 

When operational forms of sequences are expressed in terms of r they match 
the Z-transforms of sequences as used, for example, by Aseltine [51 (hence the use 
of "c" for the reciprocal of r). For example [5, p. 259] 

{U(V) } = - 1 o r 

But now r is a sequence and not a variable, a formula in ? equals a sequence rather 
than being a "transform" of it, and the introduction of the c-forms requires no 
theory of convergence of power series. In [2, pp. 140-143] it is shown that results 
previously obtained using the theory of functions of a complex variable including 
branch cuts and the theory of residues, may be obtained by purely algebraic meth- 
ods from the field properties of iY. 
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